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The instability of a bed of particles sheared by a viscous fluid is investigated theor-
etically. The viscous flow over the wavy bed is first calculated, and the bed shear
stress is derived. The particle transport rate induced by this bed shear stress is
calculated from the viscous resuspension theory of Leighton & Acrivos (1986). Mass
conservation of the particles then gives explicit expressions for the wave velocity
and growth rate, which depend on four dimensionless parameters: the wavenumber,
the fluid thickness, a viscous length and the shear stress. The mechanism of the
instability is given. It appears that for high enough fluid-layer thickness, long-wave
instability arises as soon as grains move, while short waves are stabilized by gravity.
For smaller fluid thickness, the destabilizing effect of fluid inertia is reduced, so that
the moving flat bed is stable for small shear stress, and unstable for high shear stress.
The most amplified wavelength scales with the viscous length, in agreement with the
few available experiments for small particle Reynolds numbers. The results are also
compared with related studies for turbulent flow.

1. Introduction
When an initially flat bed of small heavy particles is sheared by a clear fluid, the bed

is unstable and ripples grow. Such flows, which are encountered in many industrial
applications and in the natural environment, can be either oscillating or steady. Sand
ripples observed in shallow water along beaches correspond to the oscillating case,
the oscillating flow near the bed being created by surface waves (Blondeaux 1990).
Ripples observed in rivers or in closed or open channels correspond to the steady
case; here, small deformations of the upper fluid surface do not couple with the bed,
so long as the flow depth is great enough. This paper is devoted to the latter case of
ripple formation under steady flow; more precisely, we show, on the basis of a simple
analytical model, that a viscous shear flow may be responsible for the bed instability.

Sheared beds of particles have been studied within two different contexts, chemical
engineering and hydraulic engineering. Within the former context, the resuspension
of small particles due to hydrodynamic interactions was first studied by Gadala-
Maria & Acrivos (1980). For vanishing particle Reynolds number, the height of
the resuspended layer grows linearly with the shear stress, and is typically a few
particle diameters thick for moderate shear stress (Leighton & Acrivos 1986). The
stability of such resuspension flows has not been studied extensively. However, several
Poiseuille flow experiments show the appearance of waves at the interface between the
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resuspended layer and the clear fluid (Kuru, Leighton & McCready 1995; Schaflinger
1994; Schaflinger, Acrivos & Stibi 1995; Schaflinger, Acrivos & Zhang 1990).

The existing stability analyses consider the resuspended layer as an effective New-
tonian fluid whose viscosity and density depend on the local particle concentration
φ. Zhang, Acrivos & Schaflinger (1992) consider the particle layer as a well-mixed
suspension with uniform particle concentration φ, so that the base flow is a two-layer
plane Poiseuille flow. Accordingly, they recover the long- and short-wave instabilities
due to the jump in viscosity discovered by Yih (1967) and Hooper & Boyd (1983),
respectively. The long-wave analysis of Loimer & Schaflinger (1998) introduces cor-
rections of the viscosity and density with the interface height, which ensure mass
conservation of the particles, and also includes a slip velocity of the suspended layer
at the bottom wall. This improvement leads to an additional instability for small
thickness of the less viscous clear fluid, which is not present in two-layer flows. In
the studies of Zhang et al. and Loimer & Schaflinger, the assumption of uniform
particle concentration implies a parabolic velocity profile with negative curvature in
both layers, and a discontinuous slope of the velocity profile at the interface due to
the viscosity jump. This assumption greatly simplifies the analysis, and may be valid
far from the threshold of particle movement (high Shields number) where the whole
layer is resuspended. However, this assumption is not valid for smaller shear rates
where the particle concentration varies continuously within the resuspended layer.
Indeed, the effective viscosity gradient leads to a change of curvature of the velocity
profile at the interface, which can be expected to affect the stability of the flow.

Miskin, Elliott & Ingham (1999) take into account the velocity profile of the
resuspended layer, as calculated by Schaflinger et al. (1990). However, the particle
concentration is not perturbed in this study, which is a questionable assumption.
This analysis amounts to solving the Orr–Sommerfeld equation for channel flow, with
given profiles for the basic streamfunction, density and viscosity. Long waves are
found to be always unstable, with the striking result that the wavenumber k = 0 is
generally unstable (whereas it might be expected to be neutral) and that it is the most
unstable wavenumber for small Reynolds numbers. For completeness, it should be
noted that the simulations by Stokesian dynamics of Morris & Brady (1998) do not
report instabilities.

Within the context of hydraulic engineering, the stability of a bed of particles is
related to the formation of sediment ripples by river or coastal currents (Raudkivi
1998). Despite the huge number of experimental and theoretical studies, this problem
is not well understood and even the relevance of stability analyses is questioned
(Raudkivi 1997). The methodology of the available stability analyses is as follows.
Velocities in the moving bed are assumed small compared to those of the clear fluid,
so that the turbulent flow above a sinusoidal bed disturbance is calculated as if
the bed were fixed. The bed shear stress is then derived, and semi-empirical laws
then give the corresponding perturbed particle transport rate. Mass conservation in
the moving bed finally gives the growth rate of the instability. The most amplified
wavelengths predicted by such stability calculations (Engelund & Fredsøe 1982;
Richards 1980; Sumer & Bakioglu 1984) agree with the observed ripple length in
some experiments in a particular range of particle Reynolds numbers, e.g. those of
Coleman & Melville (1996), but the predicted wavelengths are much shorter than
those observed in most other experiments (Yalin 1985). Part of the discrepancy may
arise from the parametrization of the turbulence. Therefore, as pointed out earlier by
Bagnold (1966), investigation of viscous flows may improve our understanding of the
problem and the physical mechanisms involved. Indeed, some experiments with small
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Figure 1. Couette flow over a wavy bed.

non-cohesive particles performed by Mantz (1978) show that ripples grow within the
viscous sublayer, even when particle inertia is small.

The present paper thus addresses the question of the instability of a bed of
particles under a viscous linear shear flow. Particles are assumed non-cohesive, with
diameters much greater than 1 µm so that Brownian motion can be neglected. The
methodology parallels the ‘quasi-static’ methodology sketched above for a sand bed
sheared by turbulent water. The perturbed flow over a small-amplitude sinusoidal
disturbance is first calculated as if the bed were fixed, and the bed shear stress is
derived (§ 2). The particle flow rate driven by the bed shear stress is then calculated
from the viscous resuspension theory of Leighton & Acrivos (1986) (§ 3). The particle
mass conservation equation finally gives the wave velocity and growth rate of the
disturbance (§ 4). The results are discussed in the final section, with emphasis on
the validity of the hypotheses involved in the model, on the physical mechanism of
the instability, and on a comparison with other studies (§ 5).

2. Flow over a sinusoidal fixed bed
In this section, we consider the linear shear flow over a fixed sinusoidal bed,

η = η̂ cos kx (figure 1). From the results of Charru & Hinch (2000), we show that
the bed shear stress disturbance is not in phase with the bed disturbance, owing to
inertia effects. It will be shown in § 4 that this inertia-induced phase lag is responsible
for the bed instability. The problem involves three length scales, namely the inverse
wavenumber k−1, the thickness h, and the viscous length lv = (ν/kγ)1/3, where ν is
the kinematic fluid viscosity and γ the shear rate. Taking k−1 as the unit length, the
problem therefore depends on two parameters, the dimensionless thickness kh and
dimensionless viscous length klv . For future convenience we also introduce the shear
Reynolds number Re:

Re:=
γh2

v
=

(kh)2

(klv)3
. (1)

The flow can be considered as the sum of a basic flow U = γy over a flat bed (η̂ = 0),
and disturbances (u, v) = 1

2
(û(y), v̂(y)) exp(ikx) + c.c. induced by the bed disturbance.

For small bed slopes, i.e. kη̂ � 1, the linearized vorticity equation can be recast into
the standard Airy equation through the change of variable z(y) = eiπ/6(ky−i(klv)

3)/klv .
The amplitude of the vorticity disturbance ω = 1

2
ω̂(y) exp(ikx) + c.c. is then given by

ω̂(y)

γ
= {C1(kh, klv)Ai(z(y)) + C2(kh, klv)Bi(z(y))}kη̂, (2)

where Ai and Bi are the Airy functions and C1 and C2 are integration constants. Then,
the streamfunction ψ can be obtained from the equation ∂2

yψ̂−ψ̂ = −ω̂, and C1 and C2

are determined from the no-slip boundary conditions at the walls (see Appendix A).
The amplitude τ̂b of the bed shear stress disturbance τb = 1

2
τ̂b exp(ikx) + c.c., which is
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Figure 2. Bed shear stress disturbance versus wavenumber kh, for Re = 1: (a) normalized modulus
|τ̂b|/µγkη̂, (b) argument τ̂bi/τ̂br . Straight lines correspond to the asymptotic regimes given by
equations (4)–(6).
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Figure 3. As figure 2 but for Re = 1000.

the quantity of interest, is then given by

τ̂b = −µω̂(0). (3)

The origin of the x-axis corresponding to the top of a crest of the bed disturbance
(η = η̂ cos kx with real η̂), the real part τ̂br (resp. the imaginary part τ̂bi) of τ̂b is the
amplitude of the component in phase (resp. out of phase) with the bed disturbance.
The phase difference between the bed shear stress τb and the bed disturbance η is
given by the argument of τ̂b.

Figures 2 and 3 display the modulus and phase of τ̂b(k) normalized by the unper-
turbed shear stress µγ and the bed slope kη̂, for Re = 1 and Re = 1000, respectively.
Straight lines corresponding to asymptotic regimes are also included. For Re � 10
(figure 2), the asymptotic regimes correspond to kh� 1 and kh� 1, and are referred
to as the ‘shallow viscous’ and ‘deep viscous’ regimes, respectively. The flow in these
regimes can be calculated from asymptotic expansions in powers of kh for the shal-
low viscous regime, and in powers of (klv)

−3 for the deep viscous regime. Then, the
following bed shear stress disturbance is obtained:
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Figure 4. Lines of increasing k at constant shear Reynolds number in the (klv , kh)-plane for
Re < 1 and Re > 1, and the three asymptotic flow regimes.

shallow viscous regime (kh� 1)

τ̂b

µγ
=

(
4

kh
+ i

Re

30

)
kη̂, (4)

deep viscous regime (kh� 1)

τ̂b

µγ
=

(
2 + i

1

2(klv)3

)
kη̂. (5)

For Re � 10 (figure 3), the bed shear stress disturbance for long and short waves
is as above, but an intermediate regime appears in the range Re−1 < kh < Re1/2,
referred to as the ‘boundary layer’ regime. The flow in this regime can be calculated
from asymptotic expansions in powers of klv , leading to the following bed shear stress
disturbance:

boundary layer regime (Re−1 < kh < Re1/2)

τ̂b

µγ
= 1.06eiπ/6 1

klv
kη̂. (6)

Note that in the case of an unbounded flow (kh = ∞), the shallow viscous regime
simply disappears.

The three flow regimes defined above can be conveniently represented in a ‘phase
diagram’ in the (log klv , log kh)-plane (figure 4). In this plane, the shallow viscous
regime lies in the lower right part (kh � 1 and kh � klv), the deep viscous regime
lies in the upper right part (kh � 1 and klv � 1), and the boundary layer regime
lies in the upper left part (klv � 1 and klv � kh). A given shear Reynolds number
Re = (kh)2/(klv)

3 corresponds to a line with slope 3/2, along which the wavenumber
increases from bottom to top. For Re < 1, a constant-Re line is to the right of the
point kh = 1, klv = 1 and long waves (kh� 1) are in the shallow viscous regime while
short waves (kh� 1) are in the deep viscous regime. For Re > 1, a constant-Re line
is to the left of the point kh = 1, klv = 1 and intermediate wavenumbers such that
Re−1 < kh < Re1/2 are in the boundary layer regime.

The physical significance of the three flow regimes can be understood by considering
the penetration height of the vorticity disturbances induced by the wavy bed, and
the corresponding inertial effects of the base flow on these disturbances (Charru &
Hinch 2000). The no-slip condition at this wavy bed creates a longitudinal velocity
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Figure 5. (a) Typical longitudinal velocity disturbances in phase with the wavy bed, and corre-
sponding vorticity disturbances ωr and their penetration height δ. (b) Same as (a) but with the
inertially induced out of phase components (the out-of-phase velocity component is magnified by
100 compared to the in-phase component).

disturbance ûr ∼ −γη̂, which diffuses over a penetration height δ, and creates a
vorticity disturbance ω̂r ∼ ûr/δ in phase with the bed (figure 5a). Asymptotic analysis
reveals that the penetration height δ scales with the thickness h when kh � 1 and
kh� klv (i.e. in the shallow viscous regime), with the inverse wavenumber k−1 when
kh � 1 and klv � 1 (i.e. in the deep viscous regime), and with the viscous length lv
when klv � 1 and klv � kh (i.e. in the boundary layer regime). This implies that in a
given regime δ scales with the smallest of the three length scales:

δ ∼ min(k−1, h, lv), or kδ ∼ min(1, kh, klv), (7a)

and hence the form of the real part of (4)–(6), which corresponds to the component
of the shear stress in phase with the wavy bed, τ̂r ∼ −µγη̂/δ.

The imaginary part of (4)–(6) corresponds to the shear stress component out of
phase with the wavy bed, and arises because of inertia effects. This out-of-phase
component can be estimated as follows. As illustrated in figure 5(b), advection by the
basic flow of the vorticity disturbance ω̂r ∼ ûr/δ creates an out-of-phase component
ω̂i ∼ Reeff ω̂r , where Reeff is an effective Reynolds number, which is found from
asymptotic analysis to be

Reeff ∼ δ

lv
. (7b)

Because of the no-slip condition, the out-of-phase velocity disturbance must decrease
near the bed. There, the sign of the vorticity disturbance must change, creating an
out-of-phase bed shear stress disturbance τ̂bi ∼ µω̂i ∼ µγReeff η̂/δ. For the three flow
regimes, the bed shear stress disturbance is shifted upstream by advection, and the
maximum phase difference between the shear stress and the wavy bed occurs in the
boundary layer regime, where it is close to π/6. As shown below, the out-of-phase
shear stress τ̂bi is responsible for the instability, because it drags the particles from
the troughs to the crests of the bed disturbance.
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Ga d = 0.090 mm d = 0.19 mm d = 0.42 mm

µ = 10−3 Pa s 10 100 1000
µ = 10−2 Pa s 0.1 1 10
µ = 10−1 Pa s 0.001 0.01 0.1

Table 1. Galileo number for ρ = 1000 kg m−3 and ρp = 2400 kg m−3.

3. Particle transport rate
The bed shear stress calculated above slowly drags the particles, and we calculate in

this section the resulting particle transport rate. For sand grains sheared by turbulent
flow, several semi-empirical laws for the particle transport rate versus the bed shear
stress are available, see for example Van Rijn (1993). For viscous flow, Bagnold
(1956) was the first to attempt to determine the particle transport rate. However, his
result does not exhibit any well-defined interface between the moving bed and the
clear fluid: the particle concentration φ decreases slowly as y−1/2, so that the particle
transport rate between the fixed bed and the height y diverges as log y. We use here
the viscous resuspension theory of Leighton & Acrivos (1986), according to which
particles are lifted up by a shear-induced diffusion mechanism, due to gradients in
the particle concentration. This theory, which is summarized in Appendix B, ignores
particle inertia, i.e. is valid for very small particle Reynolds number Rep, defined as

Rep:=
γd2

ν
= Re2

∗. (8)

(For future use, the above equation also defines the ‘turbulent’ particle Reynolds
number Re∗ based on the friction velocity u∗:=(τ/ρ)1/2.) Improvements to this theory
have been proposed (Phillips et al. 1992), but they lead to minor corrections for the
flow rate.

3.1. Particle transport rate for the flat bed

For viscous flow, the hydrodynamic force acting on a particle with diameter d and
density ρp is of order µγd2, and this force is expected to be of order of the apparent
weight (ρp − ρ)gd3 of the particle. Thus, the strength of the flow can be measured by
the classical Shields number:

Θ =
µγ

(ρp − ρ)gd
. (9)

For future use, we also introduce the Galileo number:

Ga:=
(ρp − ρ)gd3

ρν2
=

(kd)2

(klv)3Θ
=
Rep

Θ
. (10)

This number depends on the fluid and particle physical properties only, and it
corresponds to (18 times) the sedimentation Reynolds number of a small particle.
(Alternatively, D = Ga1/3 could be introduced as a dimensionless particle diameter
(Raudkivi 1998).) Table 1 shows the range of Ga for typical particle diameters and
fluid viscosities. Since Θ is of order one and Rep must be very small, the Galileo
number has to be small too, say Ga < 1.

When particles move, the moving bed lies between y = −hm and y = 0 (figure 6).
Within this moving bed, the velocity of the mixture increases from zero on the fixed
bed to some finite velocity at the interface with the clear fluid, while the volumetric
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Figure 6. Sketch of the Couette resuspension flow.

particle concentration decreases from φ0 ≈ 0.58 to zero. Leighton & Acrivos (1986)
found that the thickness of the moving bed increases linearly with the shear stress,
according to

hm

d
≈ 13.7Θ. (11)

(Note that the numerical constants are very sensitive to φ0: the value φ0 = 0.65 used
by Bagnold leads to hm/d ≈ 29Θ.) Equations (B 5) and (B 6) in Appendix B show that
the vertical profiles of the concentration φ(y) and the velocity U(y) of the mixture
can be represented by a single curve when height y and velocity U are normalized by
Θd and Θ2VS , respectively, where VS = (ρp−ρ)gd2/18µ is the Stokes settling velocity
of a single sphere. These normalized profiles are shown in figure 7, together with the
relative viscosity profile µr(φ) (µr = 1 for the pure fluid). The particle transport rate
can be obtained from

Q =

∫ 0

−hm
φ(y)U(y) dy, (12)

and is found to be
Q

VSd
= CΘ3, C ≈ 7.5. (13)

3.2. Threshold for particle transport

It is well-known that settled particles move only if the fluid shear stress exceeds some
threshold value. Several studies have been devoted to the determination of the critical
fluid conditions for incipient transport of fine grains on a flat bed. For cohesionless
sediments, and for ‘turbulent’ particle Reynolds numbers Re∗ smaller than 0.1, the
threshold Shields number Θt is found to be between 0.17 and 0.26 (Mantz 1977;
White 1940; White 1970; Yalin & Karahan 1979). Taking into account the difficulty
in defining this threshold, which has been thoroughly discussed by Mantz (1977), we
assume in the following that Θt = 0.2.

The resuspension theory of Leighton & Acrivos does not take into account the
above threshold. Moreover, since this theory considers the moving bed as a continuous
medium, it might be valid only when the moving bed is at least a few particle
diameters thick. However, experiments (Leighton & Acrivos 1986) showed that the
resuspension height grows linearly as predicted by (11), provided that the excess shear
stress (Θ −Θt) is considered, where Θt ≈ 0.26 is close to the expected threshold for
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Figure 7. Vertical profiles of the concentration φ, relative viscosity µr and normalized velocity
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2, versus the normalized height y/d/Θ. The horizontal line correspond to the interface
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incipient transport:†
hm

d
≈ 13.7(Θ −Θt). (14)

Therefore, we assume that the particle transport rate (13) is modified according to

Q

VSd
= C(Θ −Θt)

3, C = 7.5, Θt = 0.2. (15)

Slightly different choices could also be considered and will be addressed in the
discussion (§ 5.2). It should be noted that expression (15) agrees with Bagnold (1956),
who found Q ∼ (Θ − Θt)

3 (multiplied by a diverging logarithmic term as already
mentioned). It is also similar to the semi-empirical formulas commonly used in
hydraulic engineering, such as the Meyer-Peter & Müller formula Q ∼ (Θ − Θt)

3/2

(Fredsøe & Deigaard 1992).

3.3. Particle transport rate disturbance

Now consider that the moving bed is perturbed sinusoidally on a scale much longer
than its thickness (khm ≈ 13.7kdΘ � 1), and calculate the disturbance of the particle
transport rate. Let η(x, t) = 1

2
(η̂ exp(ikx−iωt)+c.c) be the disturbance of this interface

between the clear fluid and the moving bed, with real wavenumber k and complex
frequency ω. The important assumption here is that the moving bed velocity is so
small that the shear stress exerted by the clear fluid on the moving bed is the same
as if the bed were fixed. This assumption is valid if the moving bed velocity, of order
VSΘ

2 ∼ γdΘ, is very small compared to the fluid velocity γδ at the penetration height
δ of the vorticity disturbances. For Θ of order one, this assumption is equivalent to
δ � d, which is also a necessary condition for the moving bed to be considered as
a continuum; it is satisfied for fluid thickness h, wavelength 2π/k and viscous length
lv large compared to particle diameter d. The latter condition lv � d is equivalent to
(kdRep)

1/3 � 1, which is satisfied for small kd and Rep. Under these conditions, the
shear stress disturbance exerted by the clear fluid on the moving bed is given by (3),

† The threshold Θt ≈ 0.26 was determined from two types of particles in mixtures of glycerine and
water: Mississipi sediment (d ≈ 0.4 mm, Ga ≈ 0.055, Rep ≈ 0.014) and glass spheres (d = 0.139 mm,
Ga ≈ 0.008, Rep ≈ 0.002).
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and corresponds to the Shields number disturbance:

θ̂ =
τ̂b

(ρp − ρ)gd
= −Θ τ̂b

µγ
. (16)

On the other hand, the threshold Shields number Θt is modified to Θt + θt by the
gravitational component parallel to the slope ∂xη. For small slopes, the following
expression gives good agreement with experiments with sand and water (Fredsøe &
Deigaard 1992; Soulsby & Whitehouse 1997):

θt

Θt

=
∂xη

tan χ
or θ̂t =

Θt

tan χ
ikη̂, (17)

where χ is the static friction angle of the particles (angle of repose), and is typically
about 32◦ (Bagnold 1973). We assume here that (17) still holds for viscous flow, with
Θt/ tan χ = 0.2/ tan 32◦ ≈ 0.32.

As shown in the next section, the instability time scale is much longer than the
resuspension/sedimentation time scale hm/VS ∼ Θ2/γ. Thus, the concentration and
velocity profiles in the moving bed (see (B 5) and (B 6) in Appendix B) remain in
equilibrium with the instantaneous shear stress, and the particle transport rate (15)
can be used for the perturbed flow. Then, linearizing (15), the particle transport
disturbance q̂ exp[i(kx− ωt)] in the moving bed yields

q̂

VSd
= 3C(Θ −Θt)

2(θ̂ − θ̂t), (18)

with θ̂ and θ̂t given by (16) and (17), respectively.

4. Wave velocity and growth rate
The time variation ∂tη of the interface position, and thus the wave velocity and

growth rate of the instability, can be related to the particle transport gradient ∂xQ
from the conservation of the number of particles. Within the quasi-static assumptions
discussed in § 3.3 (small moving bed velocity and small growth rate), any negative
(positive) particle transport gradient ∂xQ induces a local particle deposit (removal)
which shifts the moving bed upwards (downwards), according to

φ0∂tη + ∂xQ = 0. (19)

From this equation, the wave velocity c = ωr/k and growth rate σ = ωi are found to
be

c =
1

φ0

q̂r

η̂
, σ =

1

φ0

kq̂i

η̂
, (20)

or, finally, together with (18),

c

γd
= K(Θ −Θt)

2kd
τ̂br

µγkη̂
, (21)

σ

γ
= K(Θ −Θt)

2(kd)2

{
τ̂bi

µγkη̂
− Θt

Θ tan χ

}
, (22)

where K = C/6φ0 ≈ 2.16, and the bed shear stress τ̂b = τ̂br + iτ̂bi is given by (3). The
above equations for the wave velocity and growth rate, with explicit dependence on
the parameters, are the main results of this study. They show that the bed shear stress
component in phase with the bed disturbance is responsible for the wave velocity,
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γK GaΘ(Θ − Θt)

2; h/d = 30,
Θt/ tan χ = 0. Straight lines correspond to the asymptotic regimes given by equation (23). (a)
Rep = 0.01, (b) Rep = 0.1, (c) Rep = 1.

whereas the out-of-phase component is responsible for the instability, because it drags
the particles from the troughs to the crests of the bed disturbance. The bed shear
stress depends only on the dimensionless thickness kh and viscous length klv , so that
the wave velocity and growth rate depend on the four parameters Θ, kd, kh and klv
(for given K , Θt and χ). However, rather than keeping this set of parameters, the
predictions of equations (21) and (22) will be more conveniently discussed with the
parameter set Θ, kd, h/d and Ga, where Ga is the Galileo number (10).

The expressions for the growth rate in the three asymptotic regimes can easily be
obtained from (22) with (4)–(6):

shallow viscous regime

σ

γ
= K(Θ −Θt)

2(kd)2

{
1

30

h2

d2
GaΘ − Θt

Θ tan χ

}
, (23a)

deep viscous regime

σ

γ
= K(Θ −Θt)

2

{
1
2
GaΘ − (kd)2 Θt

Θ tan χ

}
, (23b)

boundary layer regime

σ

γ
= K(Θ −Θt)

2

{
1.06

2
(kd)4/3(GaΘ)1/3 − (kd)2 Θt

Θ tan χ

}
, (23c)

with similar expressions for the wave velocity.
First consider the case when the stabilizing effect of gravity is ignored

(Θt/ tan χ = 0). In this case, the growth rate no longer depends on the particle
diameter, but we retain it as the wavelength scale for easier comparison with what
follows. Figure 8 displays the normalized growth rates σ/σ(k = ∞) versus the dimen-
sionless wavenumber kd, for fluid thickness h/d = 30 and three particle Reynolds
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Figure 9. Normalized wave velocity c/c0, with c0 = c(k = 0) = γd(4d/h)K GaΘ(Θ−Θt)
2; h/d = 30,

Θt/ tan χ = 0. Straight lines correspond to the asymptotic regimes. (a) Rep = 0.01, (b) Rep = 0.1,
(c) Rep = 1.

numbers Rep = GaΘ. The chosen wavenumber range includes the longest ripples that
can be expected, λ/d ≈ 2000 (Raudkivi 1997; Yalin 1985), up to kd = 1 above which
the long-wave assumption breaks down (see § 3.3), as well as the continuum descrip-
tion of the moving bed. It appears that the growth rate always increases monotically
with wavenumber. For small Reynolds numbers (figure 8a, Rep = 0.01), long waves
are in the shallow viscous regime, with the growth rate scaling as k2, whereas short
waves are in the deep viscous regime, with constant growth rate. For higher Reynolds
number (figure 8b, Rep = 0.1), an intermediate range arises, corresponding to waves
in the boundary layer regime, and the growth rate scaling as k4/3. This boundary layer
regime spreads as the Reynolds number is increased (figure 8c, Rep = 1). The insta-
bility time scale σ−1 appears to be about 103/γ/Ga. For the quasi-static assumption
to be valid (see § 3.3), this time scale must much longer than the relaxation time Θ2/γ
of the moving bed. This condition is equivalent to GaΘ2 � 103, which is satisfied for
Θ of order one and small Ga. Figure 9 displays the corresponding wave velocity: it
is constant in the shallow viscous regime (long waves are not dispersive), it scales as
k1/3 in the boundary layer regime, and as k in the deep viscous regime.

Inclusion of the gravity term, which scales as −k2, stabilizes high wavenumbers.
Figure 10 displays the normalized growth rate σ/γ/Ga for fluid thickness h/d = 30,
and Shields and Galileo numbers spanning a range of realistic situations (table 1). For
Ga = 0.1 (figure 10a), all wavenumbers are stable for Θ/Θt = 1.5. For Θ/Θt = 1.7
and 1.8, long waves are unstable. The onset of instability corresponds to a change of
the curvature of the growth rate curve for long waves (23a); this change occurs for
equal inertia and gravity forces, at the critical Shields number Θc defined by

Θc

Θt

=

{
30

ΘtGa tan χ

}1/2
d

h
. (24)

For the parameters of figure 10(a), Θc ≈ 1.65Θt. Thus, for Θ < Θt, the bed is at
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Figure 10. Normalized growth rate σ/γ/Ga for three values of the Galileo number: (a) Ga = 0.1,
(b) Ga = 1, (c) Ga = 10. Each curve is labelled with the corresponding Shields number.
Θt/ tan χ = 0.32, h/d = 30. The corresponding shear Reynolds numbers are (a) Re = 27, 30.6,
32.4; (b) Re = 198, 234, 270; (c) Re = 1980, 2340, 2700.

rest; for Θt < Θ < Θc, the moving bed is stable; and for Θ > Θc, the moving bed is
unstable to long waves. It can be seen from (24) that for increasing Galileo number Ga
or fluid thickness h/d, the critical Shields number Θc decreases. Thus, if the Galileo
number or the fluid thickness are such that Θc/Θt 6 1, the range Θt < Θ < Θc for
which the moving flat bed is stable no longer exists; long waves are unstable as soon
as particles move, i.e. as soon as Θ = Θt (for h/d = 30, such a situation occurs when
Ga > 0.27). The latter situation is illustrated in figure 10(b) (Ga = 1) and figure 10(c)
(Ga = 10). (Note that in these two figures, the growth rate for Θ/Θt = 1.1, although
small, is positive for wavenumbers below the cutoff wavenumber koff .) Figure 10 also
shows that the width of the unstable band, as well as the most unstable wavenumber,
increase for increasing Shields number or Galileo number.

In fact, the existence of a stable moving bed depends on the value of the shear
Reynolds number Re at the threshold Shields number Θt. Indeed, equation (24) can
also be written

Θc

Θt

=

{
30

Re(Θt) tan χ

}1/2

.

This equation shows that if Re(Θt) < 30/ tan χ ≈ 48, then Θc/Θt > 1, and there
exists a range of stable Shields number; otherwise long waves are unstable as soon
as particles move. Figures 10(a), 10(b) and 10(c) correspond to Re(Θt) = 18, 180
and 1800, respectively. Physically interpreted, the existence of a stable moving bed
originates in the stabilizing effect of the proximity of the upper plate, which reduces
inertia effects for the long waves, and thus reduces the out-of-phase bed shear stress
disturbance.

The cutoff wavenumber koff (σ = 0), the wavenumber with maximum growth rate
kmax, and the corresponding growth rate σmax = σ(kmax) can be estimated as follows.
The growth rate σ(k) increases in the shallow viscous regime, and then decreases in
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the boundary layer regime because the stabilizing effect of gravity, which scales as
−k2, is stronger than the destabilizing effect of inertia, which scales as k4/3. Thus, for
moderate Shields numbers, koff and kmax are expected to be in the boundary layer
regime, and can be estimated from (23c), giving

koff d ≈
(

1.06

2Θt/ tan χ

)3/2

Ga1/2Θ2, (25)

kmaxd ≈
(

2

3

)3/2

koff d, (26)

σmax

γ
≈ K(Θ −Θt)

2 1.063

54(Θt/ tan χ)2
GaΘ. (27)

Note that the above quantities do not involve the fluid thickness. In order to compare,
in the next section, the most amplified wavenumber (26) with experiments, it is useful
to write (26) slightly differently with Rep = GaΘ:

kmaxd ≈
(

1.06

2/ tan χ

)3/2(
Θ

Θt

)3/2

Re1/2
p .

Thus, when the flat bed is unstable at the threshold Shields number Θt, the most
amplified wavenumber at threshold is, with χ = 32◦,

kmaxd ≈ 0.104Re1/2
p or λmax/d ≈ 60Re−1/2

p . (28)

Thus, the most amplified wavelength λmax ≈ 60(ν/γ)1/2 scales with the viscous length
(ν/γ)1/2 = ν/u∗. Introducing the penetration height δ = lv of vorticity disturbances,
one obtains λmax ≈ 29lv .

For high Shields numbers, the cutoff wavenumber is in the deep viscous regime,
and can be estimated using (23b), yielding

koff d ≈
(

Ga

2Θt/ tan χ

)1/2

Θ. (29)

The Shields number beyond which the cutoff wavenumber can be estimated by (29)
rather than by (25) corresponds to the crossing of the curves koff d(Θ) given by (25)
and (29), which leads to Θ = 2Θt/ tan χ/1.063/2 ≈ 0.59.

The above results are summarized in the stability diagrams shown in figure 11 and
figure 12. Figure 11 displays marginal stability curves obtained from (22) for a fixed
Galileo number Ga = 0.27 and four fluid thicknesses h/d, as well as the estimated
curves obtained from (25) and (29) (straight lines). This diagram clearly shows that
when h/d < 30, there exists a range of stable Shields numbers (see marginal stability
curves for h/d = 10 and 20), whereas this range no longer exists when h/d > 30
(see the curve for h/d = 50). Figure 12 displays the same marginal stability curves,
for fixed thickness h/d = 30 and five Galileo numbers. For Ga < 0.27, there exists a
range of Shields numbers for which the bed is moving and is stable (e.g. Ga = 0.03
and 0.1); for Ga > 0.27 this stable range no longer exists (Ga = 1 and 3).
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Figure 11. Marginal stability curves for Ga = 0.27 and four thicknesses h/d. Straight lines
correspond to the estimated cutoff wavenumbers (25) and (29).
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5. Discussion and conclusion
5.1. Summary of results

In this paper a simple analytical model has been presented for the instability of a bed
of particles sheared by a viscous fluid for Shields number Θ (dimensionless bottom
shear stress) of order one, which gives explicit expressions for the wave velocity and
the growth rate (equations (21), (22)). The model involves three main assumptions.
The first one is that the particle Reynolds number is small (Rep < 1), for the viscous
resuspension theory of Leighton & Acrivos to be valid. The second one is that the
characteristic velocity Θ2VS in the moving bed is small compared to the fluid velocity
γδ (at the penetration height δ of the vorticity disturbances induced by the wavy bed),
so that the disturbance flow in the clear fluid can be calculated as if the bed were
fixed. This assumption only requires that the particle diameter be small compared to
the three length scales h, k−1 and lv , the latter condition (d � lv) being satisfied for
small Rep. The third assumption is that the relaxation time hm/VS of the bed is small
compared to the instability time scale σ−1. This assumption appears a posteriori to
be satisfied if GaΘ2 � 103, which is the case for small Galileo number.



318 F. Charru and H. Mouilleron-Arnould

Within this model, the instability mechanism is the following. The disturbance flow
in the clear fluid creates a bed shear stress τ̂b ∼ −µω̂ in phase with the bed disturbance,
which drags the bed according to (18) and propagates the bed disturbance with the
wave velocity (21). Long-wave instability arises from inertia effects in the clear fluid
which shift the bed shear stress maximum upstream of the bed crest, according to the
physical mechanism described in § 2. The out-of-phase bed shear stress component
drives the particles from the bed troughs towards the crests, leading to the growth
rate (22). Short waves are stabilized by gravity. Note that this instability is similar to
that of the thin liquid layer sheared by a less viscous fluid, as described by Charru &
Hinch (2000).

Two quite different situations may occur. On the one hand, for small enough
fluid thickness (typically a few tens particle diameters), the moving bed is stable for
Shields numbers in the range Θt < Θ < Θc (equation (24)); there, the closeness of
the upper plate reduces inertia effects and all wavenumbers are stabilized by gravity.
For Θ > Θc, wavenumbers smaller than a cutoff wavenumber koff are unstable. On
the other hand, for large fluid thickness, Θc is smaller than Θt, so that the bed
is unstable as soon as particles move. The cutoff wavenumber koff , as well as the
most amplified wavenumber kmax and the corresponding growth rate σmax, increase
with increasing Shields number. Approximate expressions have been derived for these
quantities: close to the threshold, the approximate cutoff wavenumber is given by
(25); for Shields numbers higher than 0.59, it is given by (29).

5.2. Sensitivity to the particle transport rate models

We now briefly investigate the robustness of our results as a function of the different
existing formulas for the particle transport rate versus shear stress. The above results
were derived with the particle transport formula (13) obtained from the viscous
resuspension theory of Leighton & Acrivos (1986) in which the threshold for particle
transport Θt was introduced by analogy with the Meyer-Peter & Müller formula
(equation (15)). A more general particle transport formula Q/VSd = C(Θ − Θt)

m

would lead to essentially the same results, for any m > 1. In particular, the critical
Shields number (24), the cutoff wavenumber (25) and (29), and the most unstable
wavenumber (26) would remain unchanged, as well as the stability diagrams shown in
figure 11 and figure 12. Another possibility, by analogy with the sediment transport
formula proposed by Bagnold (1956), would be the slightly different expression
Q/VSd = CΘ2(Θ −Θt). Again, the results are essentially the same, as can be seen in
Appendix C. It may thus be concluded that the main results of the present study are
largely independent of the existing particle transport formulas.

5.3. Comparison with previous work

The predictions of the present study can be compared with the stability analysis
by Sumer & Bakioglu (1984), who extended the work of Richards (1980) for a
turbulent flow over an erodible bed to an hydraulically smooth bed. It is remarkable
that these two studies qualitatively predict the same results as ours: long-wave
instability due to the bed shear stress component in phase with the slope of the
wavy bed, and short waves stabilized by gravity effects proportional to −k2. In
particular, Sumer & Bakioglu show that for small particle Reynolds numbers, the most
amplified wavenumber as well as the width of the unstable band scale with the viscous
length ν/u∗, in agreement with the present study (see equation (28)). More precisely,
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extrapolating their results to the viscous case,† their most amplified wavelength
is found to be λmax ≈ 17ν/u∗, whereas the present study predicts λmax ≈ 60ν/u∗.
Moreover, from their figures 5 and 7, the ratio kmax/koff is found to be 0.57, which is
very close to the ratio (2/3)3/2 ≈ 0.544 predicted here.

We now turn to a comparison of the predictions of the present study with experi-
ments. Equation (24) for the threshold, as well as equations (26) and (27) for the most
amplified wavenumber and the corresponding growth rate might be expected to be
easily tested. Unfortunately, no detailed experimental study was found to be available.
Only wavelengths have been reported and no linear growth rates appear to have been
measured. Two Couette flow experiments in annular channels have been performed,
by Leighton & Acrivos (1986) and Betat, Frette & Rehberg (1999). Leighton &
Acrivos (1986) measured the resuspension height for several types of particles and
viscous fluids, but they do not report instabilities; the reason might be that their flows
were in the stable range Θt < Θ < Θc. Indeed, their Galileo number was in the range
10−6–0.054, which gives 5 < Θc/Θt < 120 for fluid thickness h = 5 mm. Betat et al.
(1999) report strong ripples for glass beads in water (Ga ≈ 330), with a wavelength
λ/d ≈ 300. However, their shear Reynolds number is about 6000, and the water flow
is probably turbulent, so that the present study is not relevant.‡

Although the results of the present study are derived for Couette flow, they are
expected to be valid for other flows such as Poiseuille or boundary layer flows provided
the penetration height of the vorticity disturbances induced by the ripples is smaller
than the height within which the shear rate is approximately constant. Therefore, our
predictions can be compared with a number of additional experiments. Schaflinger
et al. (1995) measured the pressure drop in plane Poiseuille flow of polystyrene beads
in a water–ethanol mixture (Ga ≈ 5.0). For Ga = 5.0 and Θ ≈ 1 (rough estimate),
instabilities are reported at λ/d ≈ 54 whereas our prediction (28) yields λ/d ≈ 27.
The difference could be attributed to the high particle Reynolds number, Rep ≈ 5.
The convective nature of the instability might be responsible for the fact that it
was not observed at smaller Shields numbers (i.e. it would have been observed in
longer channels). Kuru et al. (1995) report ripple formation in Poiseuille pipe flow
(glass beads and water–glycerin mixture). For their smallest Reynolds number which
corresponds to laminar flow (Ga ≈ 20, Θ ≈ 0.10 and Rep ≈ 2.1), the ripple length is
λ/d ≈ 97 and our prediction is λ/d ≈ 41. However, their wavelengths increase with
the friction velocity, which confirms that flow conditions are again too strong for the
present theory to be truly applicable.

In contrast with the small number of resuspension flow experiments, the formation
and growth of sand ripples in water flowing down inclined open channels has been
extensively studied. However, for most data, grain inertia is not negligible, and only
the experiments of Mantz (1978) and Yalin (1985) at small particle Reynolds numbers
are relevant here. The data collected by Yalin (1977, 1985) show that for Re∗ < 2.5 the
ripple length would be λ ≈ 2200ν/u∗ and would scale with the thickness δ ≈ 11.6ν/u∗

† The most amplified wavenumber of Sumer & Bakioglu (1984) depends on a parameter
β = 1/ tan α, where α is the dynamic friction angle introduced by Bagnold (1954). Extrapolat-
ing the results shown in their figure 7 to the case β = 1.3, which corresponds to the macro-viscous
regime defined by Bagnold (1954), one finds kmaxν/u∗ ≈ 0.36, i.e. λmax ≈ 17ν/u∗.‡ Betat et al. (1999) gives Re∗c ≈ 2.4 as the critical particle Reynolds number for the appearance
of ripples. However, this calculation is based on the hypothesis of linear shear flow, which probably
underestimates particle Reynolds numbers. Indeed, for Ga = 330 in their experiments, taking
the low value Θt = 0.04 gives a particle Reynolds number at threshold for particle transport
Re∗t = (ΘtGa)

1/2 ≈ 3.6, so that particles should be at rest for Re∗c ≈ 2.4.
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of the viscous sublayer.† The two-dimensional ripples reported by Mantz (1978)
correspond to λ ≈ 530ν/u∗.‡ Our result, λmax ≈ 60ν/u∗, is in qualitative agreement
with these observations, but it underpredicts the ripple length.

5.4. Conclusion

Many authors, e.g. Raudkivi (1997), have stated that our understanding of ripple
formation remains unsatisfactory, in particular the basic comparison of linear stability
results and experiments. The present study aimed at improving this understanding
by the derivation of a viscous flow model which provides explicit expressions for
the growth rate and wave velocity against all parameters. Unfortunately, appropriate
experimental results for validation are still lacking. The ripple length reported in most
experimental studies is in fact an ‘equilibrium length’ reached after a long coalescence
process, which may be several times longer than the primary wavelet (Coleman &
Melville 1994; Mantz 1978; Raudkivi 1997). Moreover, the results from classical flume
experiments close to the threshold Shields number are doubtful: first, they involve
small fluid thicknesses of a few centimetres, which could trigger resonant interaction
between the bed and the free surface (such a resonance mechanism has been studied
for inviscid potential flow by Coleman & Fenton 2000). Secondly, nonlinear effects
may appear very soon: ripple growth increases the shear stress, and modifies the
whole flow (Mantz 1978). Thus, well-controlled and well-designed experiments are
highly desirable. Such experiments should investigate the early stages of the growth of
ripples close to the threshold Shields number. These experiments should also elucidate
the subcritical or supercritical nature of the instability as well as its convective or
absolute character.

In parallel with such experiments, stability analysis still need to be refined by
including a stronger coupling between the fluid flow and the bed as well as grain
inertia (in our model as well as in all previous ones, the two-phase nature of the
bed is accounted for only in the particle transport rate). As a next step, nonlinear
theoretical studies, based on firm ideas on the linear instability mechanism, are then
needed to understand the saturation of the ripple amplitude, its long-time evolution,
as well as ripple coalescence. The long-wave instability predicted by the present model
may appear to be a good starting point for such a nonlinear study. Indeed, weakly
nonlinear analysis of long-wave instability (with the band of unstable wavenumbers
including zero) has been shown to lead to wave coalescence and an increase of the
wave height, e.g. Chang et al. (1997).

We thank Olivier Eiff for fruitful discussions and careful reading of this paper.

† The ripple length measured by Coleman & Melville (1996) seems to scale with the grain
diameter, λ/d ≈ 200, rather than with a viscous length. However, these ripples correspond to high
particle Reynolds numbers, Re∗ ≈ 4 to 8 (Ga = 140). Within this range, the data collected by
Yalin (1985) indicate that the equilibrium ripple length no longer scales with ν/u∗ but reaches a flat
minimum which, for Ga = 140, is about λ/d ≈ 650.
‡ The two-dimensional ripples shown by Mantz in his figure 2(d ) correspond to silica grains

with diameter d = 15 µm in water, so that Ga = 0.054. The ripple length is λ ≈ 50 mm, and flow
conditions correspond to Re∗ = 0.16 and Θ = 0.46, with Θt = 0.23. According to the present
study, these ripples are in the ‘boundary layer’ regime, and the penetration depth of vorticity
disturbances is lv ≈ 0.4 mm. This penetration depth is smaller than the thickness of the viscous
sublayer 11.6ν/u∗ ≈ 1.1 mm, so that the present study should be relevant.
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Appendix A
The integration constants in (2) are given by

C1(kh, klv) =
B+ − B−

A+B− − A−B+
, C2(kh, klv) = − A+ − A−

A+B− − A−B+
, (A 1)

with

A± =

∫ kh

0

e±Y Ai(z(Y )) dY , B± =

∫ kh

0

e±Y Bi(z(Y )) dY ,

and

z(Y ) =
1

klv
(Y − i(klv)

3)eiπ/6,

and the streamfunction is given by

k2

γ
Ψ̂ (y) =

1

2

{
e−ky

∫ ky

0

eY ω̂(Y ) dY + eky
∫ kh

ky

e−Y ω̂(Y ) dY

}
+ 1

2
e−ky. (A 2)

Appendix B
This Appendix summarizes the viscous resuspension theory of Leighton & Acrivos

(1986). The origin of the vertical y-axis here is set at the location of the interface
at rest, as in their paper. The mixture is assumed to behave as a Newtonian fluid
with density ρ(φ) and effective viscosity µr(φ)µ, where µr(φ) is the relative viscosity
(µr = 1 for the pure fluid). For a pure shearing flow, integrating the x-momentum
conservation equation, ∂y(µ∂yU) = 0, gives

1

18
µr

dU/VS
dy/d

= Θ, (B 1)

where VS = (ρp − ρ)gd2/18µ is the Stokes settling velocity of a single sphere. The
mass conservation of the particles expressing the equilibrium between downwards
sedimentation and upwards diffusion, can be written as

f(φ)VSφ+ (γd2/4)D(φ)∂yφ = 0. (B 2)

Here, the first term is the sedimentation flux, where f(φ) is the ‘hindrance function’
taking into account the retarding effect of the other spheres on the Stokes settling
velocity. The second term is the shear-induced diffusion flux, where D(φ) = O(1) is the
dimensionless diffusion coefficient (Leighton & Acrivos 1987). The empirical relations
for f(φ), µr(φ) and D(φ) proposed by Leighton & Acrivos (1986) are

f(φ) =
1− φ
µr(φ)

, µr(φ) =

(
1 +

1.5φ

1− φ/φ0

)2

, D(φ) = 1
3
φ2(1 + 1

2
exp(8.8φ)), (B 3a–c)

with φ0 = 0.58. Then, the upper and lower bounds of the resuspended layer at y = hu
and y = −hl , respectively, are found to be

hu

d
= 9

2
Θ

∫ φ0

0

(
1

φ
− 1

φ0

)
D

fµr
dφ ≈ 1.86Θ, (B 4a)

hl

d
= 9

2
Θ

∫ φ0

0

1

φ0

D

fµr
dφ ≈ 11.8Θ. (B 4b)
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The height y and velocity U at which the volume concentration is φ are given by

y + hl

d
= 9

2
Θ

∫ φ0

φ

1

φ

D

fµr
dφ, (B 5)

U

VS
= 4( 9

2
)2Θ2

∫ φ0

φ

1

φ

D

fµ2
r

dφ. (B 6)

Finally, the particle flow rate is given by

Q

VSd
=

1

VSd

∫ hu

−hl
φU dy = CΘ3, (B 7)

with

C = 4( 9
2
)3

∫ φ0

0

{
D

fµr

∫ φ0

φ

1

φ

D

fµ2
r

dφ

}
dφ ≈ 7.5.

Appendix C
By analogy with the sediment transport formula proposed by Bagnold (1956), the

expression

Q

VSd
= CΘ2(Θ −Θt) (C 1)

could also be used for the particle transport rate. The critical fluid thickness above
which the bed is unstable as soon as particles move is still defined by (24) with
Θc/Θt = 1. For smaller fluid thickness, the moving bed becomes unstable at the
critical Shields number Θc2 defined by

Θc2

Θt

=
1

3

{
1 +

{
1 + 3

Θ2
c

Θ2
t

}1/2
}

(C 2)

where Θc is given by (24). Thus, the range of stable Shields number is larger than that
obtained from the particle transport formula (15). The band of unstable wavenumbers
is also larger, by a factor (3− 2Θt/Θ)3/2 for Θ < 0.33 and by a factor (3− 2Θt/Θ)1/2

for Θ > 0.33.
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